產(chǎn)品編號(hào) | bs-0681R-BF594 |
英文名稱 | Rabbit Anti-Insulin Receptor/BF594 Conjugated antibody |
中文名稱 | BF594標(biāo)記的胰島素受體抗體 |
別 名 | CD 220; CD220; CD220 antigen; HHF 5; HHF5; INSR; IR; INSR_HUMAN; Insulin receptor subunit alpha. |
規(guī)格價(jià)格 | 100ul/2980元 購買 大包裝/詢價(jià) |
說 明 書 | 100ul |
研究領(lǐng)域 | 細(xì)胞生物 神經(jīng)生物學(xué) 信號(hào)轉(zhuǎn)導(dǎo) 細(xì)胞凋亡 細(xì)胞膜受體 內(nèi)分泌病 細(xì)胞表面分子 糖蛋白 |
抗體來源 | Rabbit |
克隆類型 | Polyclonal |
交叉反應(yīng) | Human, Rat, (predicted: Mouse, Chicken, Dog, Cow, Horse, Rabbit, Sheep, ) |
產(chǎn)品應(yīng)用 | IF=1:50-200
not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. |
分 子 量 | 80/152kDa |
性 狀 | Lyophilized or Liquid |
濃 度 | 1mg/ml |
免 疫 原 | KLH conjugated synthetic peptide derived from human Insulin receptor subunit alpha |
亞 型 | IgG |
純化方法 | affinity purified by Protein A |
儲(chǔ) 存 液 | 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. |
保存條件 | Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. |
產(chǎn)品介紹 |
background: The insulin receptor is a heterotetrameric membrane glycoprotein with tyrosine-protein kinase activity, consisting of disulfide-linked subunits in a beta-alpha-alpha-beta configuration. The beta subunit possesses a single transmembrane domain, whereas the alpha subunit is completely extracellular. The alpha chains contribute to the formation of the ligand-binding domain, while the beta chains carry the kinase domain. Binding of insulin to the insulin receptor stimulates its association with downstream mediators including IRS1 and phosphatidylinositol 3'-kinase (PI3K) which leads to glucose uptake. Two transcript variants encoding different isoforms have been found for this gene produced by alternative splicing. Protein kinases are enzymes that transfer a phosphate group from a phosphate donor, generally the g phosphate of ATP, onto an acceptor amino acid in a substrate protein. By this basic mechanism, protein kinases mediate most of the signal transduction in eukaryotic cells, regulating cellular metabolism, transcription, cell cycle progression, cytoskeletal rearrangement and cell movement, apoptosis, and differentiation. With more than 500 gene products, the protein kinase family is one of the largest families of proteins in eukaryotes. The family has been classified in 8 major groups based on sequence comparison of their tyrosine (PTK) or serine/threonine (STK) kinase catalytic domains. The tyrosine kinase (TK) group is mainly involved in the regulation of cell-cell interactions such as differentiation, adhesion, motility and death. There are currently about 90 TK genes sequenced, 58 are of receptor protein TK (e.g. EGFR, EPH, FGFR, PDGFR, TRK, and VEGFR families), and 32 of cytosolic TK (e.g. ABL, FAK, JAK, and SRC families). Function: Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosines residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway, which is responsible for most of the metabolic actions of insulin, and the Ras-MAPK pathway, which regulates expression of some genes and cooperates with the PI3K pathway to control cell growth and differentiation. Binding of the SH2 domains of PI3K to phosphotyrosines on IRS1 leads to the activation of PI3K and the generation of phosphatidylinositol-(3, 4, 5)-triphosphate (PIP3), a lipid second messenger, which activates several PIP3-dependent serine/threonine kinases, such as PDPK1 and subsequently AKT/PKB. The net effect of this pathway is to produce a translocation of the glucose transporter SLC2A4/GLUT4 from cytoplasmic vesicles to the cell membrane to facilitate glucose transport. Moreover, upon insulin stimulation, activated AKT/PKB is responsible for: anti-apoptotic effect of insulin by inducing phosphorylation of BAD; regulates the expression of gluconeogenic and lipogenic enzymes by controlling the activity of the winged helix or forkhead (FOX) class of transcription factors. Another pathway regulated by PI3K-AKT/PKB activation is mTORC1 signaling pathway which regulates cell growth and metabolism and integrates signals from insulin. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 thereby activating mTORC1 pathway. The Ras/RAF/MAP2K/MAPK pathway is mainly involved in mediating cell growth, survival and cellular differentiation of insulin. Phosphorylated IRS1 recruits GRB2/SOS complex, which triggers the activation of the Ras/RAF/MAP2K/MAPK pathway. In addition to binding insulin, the insulin receptor can bind insulin-like growth factors (IGFI and IGFII). Isoform Short has a higher affinity for IGFII binding. When present in a hybrid receptor with IGF1R, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin. Subunit: Tetramer of 2 alpha and 2 beta chains linked by disulfide bonds. The alpha chains contribute to the formation of the ligand-binding domain, while the beta chains carry the kinase domain. Forms a hybrid receptor with IGF1R, the hybrid is a tetramer consisting of 1 alpha chain and 1 beta chain of INSR and 1 alpha chain and 1 beta chain of IGF1R. Interacts with SORBS1 but dissociates from it following insulin stimulation. Binds SH2B2. Activated form of INSR interacts (via Tyr-999) with the PTB/PID domains of IRS1 and SHC1. The sequences surrounding the phosphorylated NPXY motif contribute differentially to either IRS1 or SHC1 recognition. Interacts (via tyrosines in the C-terminus) with IRS2 (via PTB domain and 591-786 AA); the 591-786 would be the primary anchor of IRS2 to INSR while the PTB domain would have a stabilizing action on the interaction with INSR. Interacts with the SH2 domains of the 85 kDa regulatory subunit of PI3K (PIK3R1) in vitro, when autophosphorylated on tyrosine residues. Interacts with SOCS7. Interacts (via the phosphorylated Tyr-999), with SOCS3. Interacts (via the phosphorylated Tyr-1185, Tyr-1189, Tyr-1190) with SOCS1. Interacts with CAV2 (tyrosine-phosphorylated form); the interaction is increased with 'Tyr-27'phosphorylation of CAV2 (By similarity). Interacts with ARRB2 (By similarity). Interacts with GRB10; this interaction blocks the association between IRS1/IRS2 and INSR, significantly reduces insulin-stimulated tyrosine phosphorylation of IRS1 and IRS2 and thus decreases insulin signaling. Interacts with GRB7 (By similarity). Interacts with PDPK1. Interacts (via Tyr-1190) with GRB14 (via BPS domain); this interaction protects the tyrosines in the activation loop from dephosphorylation, but promotes dephosphorylation of Tyr-999, this results in decreased interaction with, and phosphorylation of, IRS1. Interacts (via subunit alpha) with ENPP1 (via 485-599 AA); this interaction blocks autophosphorylation. Interacts with PTPRE; this interaction is dependent of Tyr-1185, Tyr-1189 and Tyr-1190 of the INSR. Interacts with STAT5B (via SH2 domain). Interacts with PTPRF. Subcellular Location: Membrane; Single-pass type I membrane protein. Tissue Specificity: Isoform Long and isoform Short are predominantly expressed in tissue targets of insulin metabolic effects: liver, adipose tissue and skeletal muscle but are also expressed in the peripheral nerve, kidney, pulmonary alveoli, pancreatic acini, placenta vascular endothelium, fibroblasts, monocytes, granulocytes, erythrocytes and skin. Isoform Short is preferentially expressed in fetal cells such as fetal fibroblasts, muscle, liver and kidney. Found as a hybrid receptor with IGF1R in muscle, heart, kidney, adipose tissue, skeletal muscle, hepatoma, fibroblasts, spleen and placenta (at protein level). Overexpressed in several tumors, including breast, colon, lung, ovary, and thyroid carcinomas. Post-translational modifications: After being transported from the endoplasmic reticulum to the Golgi apparatus, the single glycosylated precursor is further glycosylated and then cleaved, followed by its transport to the plasma membrane. Autophosphorylated on tyrosine residues in response to insulin. Phosphorylation of Tyr-999 is required for IRS1-, SHC1-, and STAT5B-binding. Dephosphorylated by PTPRE on Tyr-999, Tyr-1185, Tyr-1189 and Tyr-1190 residues. Dephosphorylated by PTPRF. DISEASE: Defects in INSR are the cause of Rabson-Mendenhall syndrome (RMS) [MIM:262190]; also known as Mendenhall syndrome. RMS is a severe insulin resistance syndrome characterized by insulin-resistant diabetes mellitus with pineal hyperplasia and somatic abnormalities. Typical features include coarse, senile-appearing facies, dental and skin abnormalities, abdominal distension, and phallic enlargement. Inheritance is autosomal recessive. Defects in INSR are the cause of leprechaunism (LEPRCH) [MIM:246200]; also known as Donohue syndrome. Leprechaunism represents the most severe form of insulin resistance syndrome, characterized by intrauterine and postnatal growth retardation and death in early infancy. Inheritance is autosomal recessive. Defects in INSR may be associated with noninsulin-dependent diabetes mellitus (NIDDM) [MIM:125853]; also known as diabetes mellitus type 2. Defects in INSR are the cause of familial hyperinsulinemic hypoglycemia type 5 (HHF5) [MIM:609968]. Familial hyperinsulinemic hypoglycemia [MIM:256450], also referred to as congenital hyperinsulinism, nesidioblastosis, or persistent hyperinsulinemic hypoglycemia of infancy (PPHI), is the most common cause of persistent hypoglycemia in infancy and is due to defective negative feedback regulation of insulin secretion by low glucose levels. Defects in INSR are the cause of insulin-resistant diabetes mellitus with acanthosis nigricans type A (IRAN type A) [MIM:610549]. This syndrome is characterized by the association of severe insulin resistance (manifested by marked hyperinsulinemia and a failure to respond to exogenous insulin) with the skin lesion acanthosis nigricans and ovarian hyperandrogenism in adolescent female subjects. Women frequently present with hirsutism, acne, amenorrhea or oligomenorrhea, and virilization. This syndrome is different from the type B that has been demonstrated to be secondary to the presence of circulating autoantibodies against the insulin receptor. Similarity: Belongs to the protein kinase superfamily. Tyr protein kinase family. Insulin receptor subfamily. Contains 3 fibronectin type-III domains. Contains 1 protein kinase domain. Database links: Entrez Gene: 3643 Human Entrez Gene: 16337 Mouse Omim: 147670 Human SwissProt: P06213 Human SwissProt: P15208 Mouse Unigene: 465744 Human Unigene: 9876 Rat Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. 胰島素受體是一個(gè)四聚體,由兩個(gè)α亞基和兩個(gè)β亞基通過二硫鍵連接。兩個(gè)α亞基位于細(xì)胞質(zhì)膜的外側(cè),其上有胰島素的結(jié)合位點(diǎn);兩個(gè)β亞基是跨膜蛋白,起信號(hào)轉(zhuǎn)導(dǎo)作用。無胰島素結(jié) 合時(shí),受體的酪氨酸蛋白激酶沒有活性。當(dāng)胰島素與受體的α亞基結(jié)合并改變了β亞基的構(gòu)型后,酪氨酸蛋白激酶才被激活,激活后可催化兩個(gè)反應(yīng): ①使四聚體復(fù)合物中β亞基特異位點(diǎn)的酪氨酸殘基磷酸化,這種過程稱為自我磷酸化(autophosphorylation); ②將胰島素受體底物(insulin receptor substrate,IRSs)上具有重要作用的十幾個(gè)酪氨酸殘基磷酸化,磷酸化的IRSs能夠結(jié)合并激活下游效應(yīng)物。 (isoform CRA-c)胰島素受體是一種跨膜蛋白,含兩個(gè)α亞基(135kda)和兩個(gè)β亞基(分子量:97kda)。胰島素受體是胰島素得傳感裝置,可在細(xì)胞內(nèi)和細(xì)胞膜循環(huán)。 |
| 极品97尤物被啪到呻吟喷水 | 在线观看av女大学生黑料 | 日本一区二区三区久久娇喘 | 87成人做爰A片免费 国产精品丰满人妻G奶 | 欧美精品无码久久久一区二区三区专区 | 特级西西4444WWW无码 | 欧美毛片无码又大又粗蜜桃 | 亚洲精品在线视频 | 精品国产污网站直接看 | 成人午夜在线视频 | 五月婷婷开心激情网 | 搡老女人老妇人老太婆 | 操老女人老91妇女老熟女 | 无套内谢的新婚少妇国语播放 | 国产精品美女www爽爽爽视频 | 红桃黄色商品在线观看 | 无码人妻aⅴ一区二区三区 成人爱爱视频免费在线播放 | 蜜桃AV一区二区精品无码 | 国产海角社区乱仑视频 | 韩国一区二区三区AV | 国产又大又粗又爽的毛片 | 国产精品性爱视频日日爱 | 国产无码一区二区在线观看 | 白丝爆 国产真人免费的 | 91嫖妓站街按摩店老熟女 | 国产人妻国产色情网 | 亚洲精品无码成人片久久-涡桑剁 | 色婷婷亚洲精品久久精品无码 | 搡老女人老太婆澡老太婆拍拍免费视频 | 久久成人免费视频 | 老熟女 码A片 | 欧美mv日韩mv国产 | 欧美成人免费在线视频 | 在线看黄色动漫的网站 | 精品国产乱码一区二区三区 | 亚洲国产另类无码日韩 | 少妇性色生活片在线观看 | 无码不卡AV毛片久久婷 | 国产精品一二三区视频出来一 | 99精品国产一区二区 |